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This is a record of the important results we cover during the lectures we
will have in the summer 2018. We will try to go over two sets of lecture notes
by Mariusz Wodzicki. Our goal is to introduce the concept of categories
and build enough familiarity with them to be able to see other mathematical
concepts we know in a more categorical point of view.

1 Review

In this section, we will review some concepts that will be helpful in the study of category
theory.

1.1 Operations on sets

We give formal definitions of common set operators, giving a bit of a taste of the lan-
guage we will use.

Definition 1 (Union of sets). Let X be a set, we can define the union operator like so:⋃
= A 7→ {x ∈ X | ∃S ∈ A, x ∈ S} : P(P(X))→ P(X)

Definition 2 (Intersection of sets). Let X be a set, we can define the intersection operator
like so: ⋂

= A 7→ {x ∈ X | ∀S ∈ A, x ∈ S} : P(P(X))→ P(X)

Definition 3 (Difference of sets). Let X be a set, we an define the difference operator
like so:

\ = (S, T) 7→ {x ∈ X | x ∈ S ∧ x /∈ T} : P(X)×P(X)→ P(X)

Definition 4 (Cartesian product). Let (Xi)i∈I , where I is some index set, be a family of
sets, the Cartesian product of these sets is

∏
i∈I

Xi = {(xi)i∈I | ∀i ∈ I, xi ∈ Xi}.

We can also see each element as a function f : I → ∪i∈I Xi such that f (i) ∈ Xi for all
i ∈ I.
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If a family of set is closed under the three first operations, we call it a ring of sets.

Definition 5 (Ring of sets). A non-empty family of sets R is called a ring of sets if for
any two elements r and r′, we have r ∪ r′, r ∩ r′, r \ r′ ∈ R.

1.2 Classes vs. Sets

Several times in our coverage of category theory, we will need to use the concept of a
class. It is very similar to that of a set and has one simple difference. While a set can
contain another set, classes cannot contain other classes. This difference is necessary
because some collections of objects can simply not form a set. Famous examples include
the class of ordinal numbers which, by the Burali-Forti paradox, cannot be a set and the
class of all sets that do not contain themselves which, by the Russel paradox, cannot be
a set.

2 Introduction to categories

2.1 Basic definitions

Definition 6 (Oriented graph). An oriented graph G consists of a class of nodes G0, a
class of arrows G1 along with two functions s, t : G1 → G0, so that each arrow f ∈ G1
has a source s( f ) and a target t( f ).

Remark 7. The nodes can also be called vertices or objects while arrows are also known
as morphisms in the context of categories.

Definition 8 (Paths). A path in an oriented graph G is a sequence of arrows ( f1, . . . , fk)
that are composable in the sense that t( fi) = s( fi−1) for i = 2, . . . , k. We will denote
Gk to be the class of paths of length k and we often refer to G2 simply as the class of
composable arrows.

Remark 9. Note that the notation indicating the direction of the path does not translate
well to what we usually think of as a path in a graph. The reason is that the arrows are
more linked to the composition of functions than paths in graphs.

Definition 10 (Category). An oriented graph C along with a map ◦ : C2 → C1 is a
category if for any ( f , g, h) ∈ C3, we have f ◦ (g ◦ h) = ( f ◦ g) ◦ h, namely, composition
is associative.

Definition 11 (Unital category). A category C is called unital if it is equipped with a
map u : C0 → C1 (for A ∈ C0, we denote u(A) = idA) such that for any arrow f : A→ B,
we have f ◦ idA = idB ◦ f = f .

Definition 12 (Hom sets). Let C be a category and A, B ∈ C0, we denote

HomC(A, B) = { f ∈ C1 | s( f ) = A ∧ t( f ) = B}.
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Definition 13 (Small and discrete). A category C is called small if the class of objects
and morphisms is not proper (it is a set). It is called discrete if there are no morphisms
and discrete unital if there are no morphisms other than the identity morphisms.

Definition 14 (Subcategory). Let C be a category, a category C′ is a subcategory of C if:

1. The objects and morphisms of C′ are objects and morphisms of C (i.e.: C′0 ⊆ C0
and C′1 ⊆ C1).

2. For every morphism f ∈ C′1, s( f ), t( f ) ∈ C′0.

3. For every pair of composable arrows ( f , g) ∈ C′2, f ◦C′ g = f ◦C g ∈ C′1.

If we are working with unital categories we have the additional requirement that for
any A ∈ C′0, uC′(A) ∈ C′1. One can show that since composition is the same as in C, the
identity must be the same.

Definition 15 (Full and wide). A subcategory C′ of C is called full if for any objects
A, B ∈ C′0, we have HomC′(A, B) = HomC(A, B). It is called wide if C′0 = C0.

Definition 16 (Covariant functor). Let C and D be categories, a covariant functor F :
C  D is a pair of maps F0 : C0 → D0 and F1 : C1 → D1 that are defined such that
the following diagrams commute (where F2 is induced by the definition of F1 with
( f , g) 7→ (F1( f ), F1(g))).

C0 C1 C0

D0 D1 D0

F0 F1

s t

F0

s t

C2 D2

C1 D1

◦C

F2

◦D

F1

If we are working with unital categories, we may want to talk about a unital functor
which requires this additional diagram to commute.

C0 D0

C1 D1

uC

F0

uD

F1

Definition 17 (Contravariant functor). Let C and D be categories, a contravariant func-
tor F : C D is similar to a covariant functor except for the first diagram which changes
a bit (see below) and the definition of F2 which becomes: ( f , g) 7→ (F1(g), F1( f )).
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C0 C1 C0

D0 D1 D0

F0 F1

s t

F0

t s

Example 18 (Hom functors). Let C be a category and A ∈ C0 one of its object. We define
the covariant and contravariant Hom functors from C to Set.

A. The functor HomC(A,−) : C  Set sends an object B ∈ C0 to the hom set
HomC(A, B) and a morphism f : B→ B′ to the function

HomC(A, f ) : HomC(A, B)→ HomC(A, B′) = g 7→ f ◦ g.

Let us check that this is a covariant functor. We show the commutativity of the
three squares in definition 16:

1. For f ∈ C1, HomC(A, s( f )) = s(HomC(A, f )) follows from the definition.

2. For f ∈ C1, HomC(A, t( f )) = t(HomC(A, f )) follows from the definition.

3. For ( f1, f2) ∈ C2, we claim that HomC(A, f1 ◦ f2) = HomC(A, f1) ◦HomC(A, f2).
In the L.H.S., an element g ∈ HomC(A, s( f1 ◦ f2)) is mapped to ( f1 ◦ f2) ◦ g
and in the R.H.S., an element g ∈ HomC(A, s( f2) is mapped to f1 ◦ ( f2 ◦ g).
Since s( f1 ◦ f2) = s( f2), we see that the two maps are the same.

B. The functor HomC(−, A) : C  Set sends an object B ∈ C0 to the hom set
HomC(B, A) and a morphism f : B→ B′ to the function

HomC( f , A) : HomC(B′, A)→ HomC(B, A) = g 7→ g ◦ f .

Let us check that this is a contravariant functor. We show the commutativity of
the three squares in definition 17:

1. For f ∈ C1, HomC(s( f ), A) = s(HomC(A, f )) follows from the definition.

2. For f ∈ C1, HomC(t( f ), A) = t(HomC( f , A)) follows from the definition.

3. For ( f1, f2) ∈ C2, we claim that HomC( f1 ◦ f2, A) = HomC( f2, A) ◦HomC( f1, A).
In the L.H.S., an element g ∈ HomC(t( f1 ◦ f2), A) is mapped to g ◦ ( f1 ◦ f2)
and in the R.H.S., an element g ∈ HomC(t( f1), A) is mapped to (g ◦ f1) ◦ f2.
Since t( f1 ◦ f2) = t( f1), we see that the two maps are the same.

Definition 19 (Full, faithfull and essentially surjective). Let F : C  D be a functor,
then:

• If the restriction FA,B : HomC(A, B) → HomD(F(A), F(B)) is injective for any
A, B ∈ C0, then we say F is faithfull.

• If FA,B is surjective for any A, B ∈ C0, then F is full.
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• If for any X ∈ D, there exists Y ∈ C0 such that D ∼= F(Y), then F is essentially
surjective.

Definition 20 (Diagram). Let C be a category. A diagram in C is functor F : D →
C where D is usually a small or even finite category. We usually draw diagrams by
partially drawing the image of D as a graph where objects are vertices and morphisms
are arrows. All the diagrams we have drawn up to this definition define the domain
of the functor implicitly. For example, if we talk about a commutative square in C, the
domain of this diagram can be drawn like so:

· ·

· ·

Remark 21. It follows trivially from this definition that functors preserve commutative
diagrams.

Definition 22 (Natural transformation). Let F, G : C  D be two covariant functors,
a natural transformation φ : F ⇒ G is a map φ : C0 → D1 that satisfies φ(A) ∈
HomD(F(A), G(A)) for all A ∈ C0 and makes the following diagram commute for any
f ∈ HomC(A, B):

F(A) G(A)

F(B) G(B)

F( f )

φ(A)

G( f )

φ(B)

For two contravariant functors, the vertical arrows are reversed.

Example 23. Let CRing denote the category of commutative rings, where objects are
commutative rings, morphisms are ring homomorphisms, and composition is the usual
composition of functions. Let Grp denote the category of groups, where objects are
groups, morphisms are group homomorphisms, and composition is the usual composi-
tion of functions.

Fix some n ∈N, we define the functor GLn : CRing Grp by

R 7→ GLn(R) for any commutative ring R and
f 7→ GLn( f ) for any ring homomorphism f

The map GLn( f ) is just the extension of f on GLn(R) by applying f to every element of
the matrices. The second functor is (−)× : CRing Grp which sends a commutative
ring R to its group of units R× under multiplication and a ring homomorphism f to f×,
its restriction on R×. Checking these mappings define two covariant functors is left as
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an (simple) exercise, but one might expect these to be functors as they play nicely with
the structure of the objects involved.

The natural transformation between these two functors is det : GLn ⇒ (−)× which
maps a commutative ring R to detR, the function calculating the determinant of a matrix
in GLn(R). The first thing to check is that detR ∈ HomGrp(GLn(R), R×) which is clearly
the case because the determinant of an invertible matrix is always a unit. The second
thing is to verify that the following diagram commutes for any f ∈ HomCRing(R, S):

GLn(R) R×

GLn(S) S×

detR

GLn( f ) f×= f |R×

detS

We will check the claim for n = 2, but the general proof should only involve more
notation to write the bigger expressions. We can rewrite the diagram as f× ◦ detR =

detS ◦GL2( f ) and show it holds as follows. Let
[

a b
c d

]
∈ GL2(R), we have

(det S ◦GL2( f ))
([

a b
c d

])
= det S

([
f (a) f (b)
f (c) f (d)

])
= f (a) f (d)− f (b) f (c)
= f (ad− bc)
= f×(ad− bc)

= ( f× ◦ det R)

([
a b
c d

])
.

We conclude that the diagram commutes and that det is indeed a natural transformation.

Definition 24 (Vertical composition). Let F, G, H : C  D be parallel functors and φ :
F ⇒ G and ψ : G ⇒ H be two natural transformations. Then the vertical composition
of φ and ψ, denoted ψ · φ : F ⇒ H is defined by (ψ · φ)(A) = ψ(A) ◦ φ(A) for all A ∈ C0.
If f : A → B is a morphism in C, then we have the following diagram that commutes
by naturality of φ and ψ:

F(A) G(A) H(A)

F(B) G(B) H(B)

φ(A)

F( f )

ψ(A)

G( f ) H( f )

φ(B) ψ(B)

This shows that ψ · φ is a natural transformation from F to H. We call this vertical
composition as opposed to horizontal composition that we introduce in definition 66.
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Definition 25 (Opposite category). Let C be a category, we denote the opposite category
Cop and define it by

Cop
0 = C0, Cop

1 = C1, sop = t, top = s,

with the correspondence defined by f op ◦op gop = (g ◦ f )op. This canonically leads to the
following contravariant functor (−)op

C : C Cop which sends an object A to Aop and a
morphism f to f op. Note that the op notation here is just used to distinguish elements
in C and Cop although the class of objects and morphisms are the same.

Remark 26. The last definition helps us define the contravariant functors as covariant
functors. Formally, let F : C D be a contravariant functor, we can see F as covariant
functor from Cop to D or from C to Dop via the compositions F ◦ (−)op

Cop and (−)op
D ◦ F

respectively.

Definition 27 (Opposite of a functor). Let F : C  D be a covariant functor, then the
opposite of this functor Fop : Cop  Dop is defined by Fop = (−)op

D ◦ F ◦ (−)op
Cop .

Definition 28 (Opposite functor). The opposite functor (−)op : Cat  Cat sends a
category or a functor to its opposite. It is a covariant functor.

Definition 29 (Monomorphism). Let C be a category, a morphism f ∈ C1 is said to
be a monomorphism if for any two morphisms g, h ∈ C1 with t(g) = t(h) = s( f ),
f ◦ g = f ◦ h implies g = h.

Definition 30 (Epimorphism). Let C be a category, a morphism f ∈ C1 is said to be an
epimorphism if for any two morphisms g, h ∈ C1 with s(g) = s(h) = t(g), g ◦ f = h ◦ f
implies g = h.

Proposition 31. Let C be a category and f : A → B a morphism, if there exists f ′ : B → A
such that f ′ ◦ f = idA, then f is a monomorphism.

Proof. If f ◦ g = f ◦ h, then f ′ ◦ f ◦ g = f ′ ◦ f ◦ h implying g = h.

Proposition 32. Let C be a category and ( f1, f2) ∈ C2, if f1 ◦ f2 is a monomorphism, then f2
is a monomorphism.

Proof. Let g, h ∈ C1 be such that f2 ◦ g = f2 ◦ h, we immediately get that ( f1 ◦ f2) ◦ g =
( f1 ◦ f2) ◦ h. Since f1 ◦ f2 is a monomorphism, this implies g = h.

Remark 33. The two dual propositions for epimorphisms also hold and are straightfor-
ward to prove.

Example 34 (Monomorphisms in the categories we know).

1. Inside the category Mon where objects are monoids and morphims are monoid
homomorphisms, the monomorphisms correspond exactly to injective homomor-
phims as shown below.
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• Let f : M → M′ be an injective homomorphims and g1, g2 : N → M be two
parallel homomorphisms. Suppose that f ◦ g1 = f ◦ g2, then for all x ∈ N,
f (g1(x)) = f (g2(x)), so by injectivity of f , g1(x) = g2(x). We conclude that
g1 = g2 and since g1 and g2 were arbitrary, f is a monomorphism.

• Let f : M → M′ be a monomorphism. Let x, y ∈ M and define px : N →
M by k 7→ xk and similarly for py. It is trivial to show that px and py are
homomorphism. If f (x) = f (y), then by the homomorphism property, we
get for all k ∈N:

f (px(k)) = f (xk) = f (x)k = f (y)k = f (yk) = f (py(k)).

In other words, we get f ◦ px = f ◦ py, so px = py and x = y. We conclude
that f is injective.

Example 35 (Epimorphisms in the categories we know).

1. Inside the category Mon an epimorphism is not necessarily surjective. For exam-
ple, the inclusion homomorphism i : N → Z is clearly not surjective but it is an
epimorphism. Indeed, let g, h : Z→ M be two monoid homomorphisms satisfy-
ing g ◦ i = h ◦ i. In particular, we have g(n) = h(n) for any n ∈N ⊂ Z. It is left to
show that also g(−n) = h(−n), but if it were not the case for some n, g(n) would
have two left inverses g(−n) and h(−n) which is not possible. We conclude that
g = h and i is an epimorphism.

Definition 36 (Isomorphism). Let C be a category, a morphism f : A→ B is said to be
an isomorphism if there exists a morphism f−1 : B → A such that f ◦ f−1 = idB and
f−1 ◦ f = idA.

Proposition 37. Let C be a category and f ∈ C1 be an isomorphism, then f is a monomorphism
and an epimorphism.

Proof idea. If the compositions with f and two other morphisms are equal, compose
with f−1 to obtain equality of the morphisms.

Definition 38 (Natural isomorphism). Let φ : F → G be a natural transformation of
functors F, G : C D. If for every A ∈ C0, φ(A) is an isomorphism in G, we say that φ
is a natural isomorphism and we may write φ : F ∼= G.

Definition 39 (Equivalence of categories).

Definition 40 (Subobject).

Definition 41 (Quotient object).

Definition 42 (Initial object). Let C be a category, an object A ∈ C0 is said to be initial if
for any B ∈ C0, |HomC(A, B)| = 1, namely there are no two parallel morphisms with
source A and every object has a morphism coming from A.
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Definition 43 (Terminal object). Let C be a category, an object A ∈ C0 is said to be termi-
nal if for any B ∈ C0, |HomC(B, A)| = 1, namely there are no two parallel morphisms
with target A and every object has a morphism going to A.

Definition 44 (Zero object). If an object is initial and terminal, we say it is a zero object
and usually denote it 0.

Examples 45. We give examples of categories where initial and terminal objects may or
may not exist.

1. ∃ terminal, @ initial: Let Sets’ denote the categories where objects are finite sets
(excluding the empty set) and morphisms are surjective functions. Clearly, {1} is
final as any set can only map into {1} by sending all their elements to 1. Suppose
that a set S were initial, then it could be mapped surjectively to any other set T,
implying that |S| ≥ |T| for any T. However, no finite number can be bigger than
any other finite number, so we have a contradiction.

2. @ terminal, ∃ initial: The category GrpI where the objects are groups and the mor-
phisms are injective homomorphisms only contains an initial object {1}. Indeed,
an injective homomorphism G → H can be seen as subgroup of H isomorphic to
G. The identity group {1} can only be isomorphic to the the identity subgroup as
any other element has degree more than 1, so {1} is initial. Moreover, a group G
cannot be terminal as G× (Z/2Z) cannot be isomorphic to any subgroup of G.

3. @ terminal, @ initial: Let G be a non trivial group. The category G∗ has a single
object ∗ with homG∗(∗, ∗) = G and the composition rule being the multiplication
in G. The only object ∗ cannot be initial nor trivial as | homG∗(∗, ∗)| > 1.

4. ∃ terminal, ∃ initial: Let X be a topological space where τ is the collection of open
sets (recall that it must contain ∅ and X). We consider the category TX where
objects are the open sets and for any two open sets U, V ∈ τ,

homTX (U, V) =

{
iU,V U ⊆ V
∅ U 6⊆ V

Note that the composition rule can easily be inferred. Since the empty set is
contained in every open set, it is an initial object. Since the full set X contains
every open set, it is a terminal object. No other set can be initial as it cannot be
contained in ∅ nor be terminal as it cannot contain X. Moreover, note that the two
objects are not isomorphic as homTX (X, ∅) = ∅.

The following gives alternate definitions for initial and terminal objects which have
the advantage of being completely categorical, making no use of sets. They use the
concept of representable functors which will be seen more in depth later.

Proposition 46. Let C be a category and ? : C → Set be a functor sending objects to the
singleton {1} and morphisms to id{1}. An object A ∈ C0 is initial if and only if the functor
HomC(A,−) is naturally isomorphic to ?.
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Proof. (⇒) Suppose that A is initial, then there is a natural transformation η from
homC(A,−) to ? that sends any object X to the only function between homC(A, X)
and {1}. Since the homC(A, X) is also a singleton, this function is an isomorphism for
all X and we conclude that η is a natural isomorphism.

(⇐) Suppose that there is a natural isomorphism η : homC(A,−) ⇒ ?, then there
are isomorphisms between {1} and homC(A, X) for all objects X ∈ C0. This means that
there is a unique morphism from A to X and that A is initial.

Proposition 47. Let C be a category and ? be as above. An object A ∈ C0 is terminal if and
only if the functor HomC(−, A) is naturally isomorphic to ?.

Proof. The proof is basically a copy of the last proof.

Proposition 48. Let C be a category, A and B are two initial (this also works for terminal)
objects of C, then A ∼= B.

Proof. Let f be the single element in homC(A, B) and f ′ be the single element in homC(B, A).
We claim that f and f ′ are inverses, thus that A ∼= B. Since the identity morphisms are
the only elements of homC(A, A) and homC(B, B), and f ′ ◦ f and f ◦ f ′, respectively, are
elements of these sets, they must be the identities.

Definition 49 (Product). Let C be a category and A, B ∈ C0. A product of A and B is an
object denoted A× B along with two morphisms p1 : A× B → A and p2 : A× B → B
(they are called projections) such that for any object V and morphisms f : V → A and
g : V → B, there exists a unique morphism h : V → A × B such that this diagram
commutes:

V

A A× B B

h
f g

p1 p2

Example 50. Inside Set, the Cartesian products with the usual projection maps are
products. Inside Grp, the direct products with the usual projection maps are products.

Definition 51 (Coproducts). Let C be a category and A, B ∈ C0. A coproduct of A
and B is an object denoted A q B along with two morphisms i1 : A → A × B and
i2 : B → A × B (they are called canonical injections) such that for any object V and
morphisms f : A → V and g : B → V, there exists a unique morphism h : A× B → V
such that this diagram commutes:

V

A A× B B

f

i1

h
g

i2
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Definition 52 (Pullback). Let C be a category and f : A → C and g : B → C be in
C1. A pullback of f and g is an object denoted A ×C B along with two morphisms
p1 : A×C B → A and p2 : A×C B → B such that this diagram commutes: and for any

A×C B B

A C

p1

p2

g

f

object V and morphisms s : V → A and t : V → B, there exists a unique morphism
h : V → A×C B that makes this diagram commute:

V

A×C B B

A C

s

t

h

p1

p2

g

f

Definition 53 (Pushout).

Example 54 (Pushouts in Grp). Let f : A→ B and g : A→ C be group homomorphism.
We construct the pushout X. We let X be the group generated by all elements in Bq C
subject to the following relations for all generators x, y, z ∈ X:

• If x, y in the same group and z = (xy)−1, then xyz = 1.

• If x = f (a) and y = g(a)−1, then xy = 1 or x = g(a) and y = f (a)−1.

We already have the other arrows of the square being the inclusion maps B → X and
C → X. We just need to check commutativity but the second relation helps with that.
For any other M in a square, define q : X → M by sending a generator to the im-
age of the generator under the arrows of the square with M. Look at what Z2 ∗Z2 is
{x, y, xy, yx, xyx, ...}.

Question 55. Is the pullback object always a subobject of the product ? Is the pushout object
always a subobject of the coproduct or quotient object of the product ? Why are these terms used
?

Definition 56 (Equalizer). Let C be a category, X, Y ∈ C0 and f , g ∈ HomC(X, Y) be
distinct. The equalizer of f and g is an object E and a morphism e : E → X such that
f ◦ e = g ◦ e and this universal property is satisfied: if o : O→ X is such that f ◦ o = g ◦ o,
then there exists a unique morphism u : O→ E such that e ◦ u = o. In picture, we have
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E X Y

O

e
f

gu
o

Definition 57 (Co-equalizer). Let C be a category, X, Y ∈ C0 and f , g ∈ HomC(X, Y) be
distinct. The co-equalizer of f and g is an object D and a morphism d : Y → D such
that d ◦ f = d ◦ g and this universal property is satisfied: if o : X → O is such that
o ◦ f = o ◦ g, then there exists a unique morphism u : D → O such that u ◦ d = o. In
picture, we have

X Y D

O

f

g

d

o
u

Definition 58 (Equivalence). A functor F : C  D is an equivalence of categories if
there exists a functor G : D  C such that FG ∼= idC and GF ∼= idD, where ∼= denote
natural isomorphism.

Theorem 59. A functor F : C  D is an equivalence of categories if and only if F is fully
faithfull and essaentially surjective.

2.2 More on natural transformations

Definition 60 (The left action of functors). Let F, F′ : C  D, G : D  E be functors
and φ : F ⇒ F′ be a natural transformation. The functor G acts on φ by sending it to
Gφ = A 7→ G(φ(A)) : C0 → E1. One can verify that this is a natural transformation
from G ◦ F to G ◦ F′ by verifying the diagram commutes for any C1 3 f : A→ B.

(G ◦ F)(A) (G ◦ F′)(A)

(G ◦ F)(B) (G ◦ F′)(B)

(G◦F)( f )

Gφ(A)

(G◦F′)( f )

Gφ(B)

If we remove all applications of G, the diagram commutes by naturality of φ. Since
functors preserve commuting diagrams, we get that Gφ is a natural transformation.

Proposition 61. The previous definition constitutes a left action, namely, idDφ = φ and
G1(G2φ) = (G1 · G2)φ.

Proof.
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Definition 62 (The right action of functors). Let F, F′ : C  D, G : E  C be functors
and φ : F ⇒ F′ be a natural transformation. The functor G acts on φ by sending it to
φG = A 7→ φ(G(A)) : E0 → D1. One can verify that this is a natural transformation
from F ◦ G to F′ ◦ G by verifying the diagram commutes for any E1 3 f : A→ B.

(F ◦ G)(A) (F′ ◦ G)(A)

(F ◦ G)(B) (F′ ◦ G)(B)

(F◦G)( f )

φG(A)

(F′◦G)( f )

φG(B)

It follows by naturality of φ; change f in the diagram of definition 22 with the mor-
phism G( f ) : G(A)→ G(B).

Proposition 63. The previous definition constitutes a right action, namely, φidC = φ and
(φG1)G2 = φ(G1 · G2).

Proof.

Proposition 64. The two actions commute. Namely, if we let F, F′ : C  D, G : D  E,
H : E′  C be functors and φ : F ⇒ F′ be a natural transformation, then we have G(φE) =
(Gφ)E.

Proof.

We will refer to these two actions as the biaction of functors on natural transformations
and they will motivate the definition of another way to compose natural transformations.
Consider the following diagram to be the setting of this definition, with F, F′, G and

C D Eφ ψ

F

F′

G

G′

G′ being functors and φ and ψ being natural transformations. With the two previous
actions, we are able to construct four new transformations:

Gφ : G ◦ F ⇒ G ◦ F′

ψF : G ◦ F ⇒ G′ ◦ F
G′φ : G′ ◦ F ⇒ G′ ◦ F′

ψF′ : G ◦ F′ ⇒ G′ ◦ F′

Observe that to go from G ◦ F to G′ ◦ F′, we have two paths yielding the following
diagram:
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G ◦ F′

G ◦ F G′ ◦ F′

G′ ◦ F

ψF′Gφ

ψF G′φ

Proposition 65. The diagram above commutes.

Proof. For a fixed element c ∈ C0 we know that a := F(c) and b := F′(c) are two different
elements of the category D and that we have an arrow f := φ(c) from a to b given by
the natural transformation φ. But as ψ is a natural transformation G ⇒ G′, we know
that the following diagram commutes:

G(b)

G(a) G′(b)

G′(a)

ψbG f

ψa G′ f

Replacing a, b and f by their values we obtain what we wanted.

Definition 66 (Horizontal composition). In the setting described above, we define the
horizontal composition of ψ and φ by ψ � φ = ψF′ · Gφ = G′φ · ψF.

Proposition 67. Horizontal composition is associative. Namely, if we let F, F′ : C1  C2,
G, G′ : C2  C3 and H, H′ : C3  C4 be functors and φ : F ⇒ F′, ψ : G ⇒ G′ and
η : H ⇒ H′ be natural transformations, then we have η � (ψ � φ) = (η � ψ) � φ.

Proof.

Proposition 68 (Interchange identity). Let F, F′, F′′ : C  D and G, G′, G′′ : D  E
be functors and φ : F ⇒ F′, φ′ : F′ ⇒ F′′, ψ : G ⇒ G′ and ψ′ : G′ ⇒ G′′ be natural
transformations. Using · to denote vertical composition, the interchange identity holds:

(ψ′ · ψ) � (φ′ · φ) = (ψ′ � φ′) · (ψ � φ)

Proof. The idea is to use the commutativity of ψ′ ◦ φ to switch from the LHS to the RHS
of the equation. To make things clearer we first draw out the diagrams The LHS of the
equation can be seen as the following diagram:

While the RHS would correspond to the following:
Joining the two diagrams, we obtain this huge one
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G′ ◦ F G′′ ◦ F′

G ◦ F G′ ◦ F′ G′′ ◦ F′′

G ◦ F′ G′ ◦ F′′

G′φ G′′φ′ψF ψ′F′

G′′ ◦ F

G′ ◦ F G′′ ◦ F′

G ◦ F G′′ ◦ F′′

G ◦ F′ G′ ◦ F′′

G ◦ F′′

G′′φψ′F

G′′φ′ψF

These definitions lead us to the first example of a 2-category.

Definition 69 (2-cateory). A 2-category consists of a class of objects C0, a class of mor-
phisms between objects C1 and a class of 2-morphisms between parallel morphisms C2
that satisfy the following conditions:

1. The objects and morphisms form a category under composition of morphisms.

2. For two objects A, B ∈ C0, the morphisms from C to D and the 2-morphisms
between them form a category under vertical composition.

3. If we consider 2-cells (two parallel morphisms with a 2-morphism between them)
as morphisms, we get a category under horizontal composition.

4. The interchange identity hold for horizontal and vertical composition.

Example 70.

1. The 2-category of categories with functors and natural transformations as we just
have proved.

Question 71. Is the vertical composition of two natural isomorphisms also a natural isomor-
phism ? What about horizontal composition ?

Definition 72 (Identity transformation). Let F : C D be a functor, the identity natural
transformation from F to itself is defined by idF = A 7→ idF(A) : C0 → D1 when the
objects in the range of F all have an identity morphism.
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G′′ ◦ F

G′ ◦ F 1 G′′ ◦ F′

G ◦ F G′ ◦ F′ G′′ ◦ F′′

G ◦ F′ G′ ◦ F′′

G ◦ F′′

G′′φψ′F

G′φ G′′φ′ψF ψ′F′

Proposition 73. Let F, F′ : C  D, G : B C and H : D  E be functors and φ : F ⇒ F′

be a natural transformation. Suppose that C and E are unital, then the following equations hold:

1. φG = φ � idG

2. Hφ = idH � φ

3. ididD � φ = φ = φ � ididC

Proof.

1. For any x ∈ B0, we have the following:

(φ � idG)(x) = φ(G(x)) ◦ F(idG(x)) (def of �)
= φG(x) ◦ F(idG(x)) (def of idG)

= φG(x) ◦ idF(G(x)) (functors preserve id morphisms)

= φG(x) (def of id morphisms)

Thus, we conclude that φ � idG = φG.

2. For any x ∈ C0, we have the following:

(idH � φ)(x) = idH(F′(x)) ◦ H(φ(x)) (def of �)
= idH(F′(x)) ◦ Hφ(x) (def of idH)

= Hφ(x) (def of id morphisms)

Thus, we conclude that idH � φ = Hφ.

3. By swapping G for idC and H for idD in the two previous equations, we get the
result we want.
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2.3 On our way to the Yoneda lemma

Definition 74 (Category of arrows). Let C be a category, Arr(C) is the category of arrows
of C. Its objects are morphisms in C and its morphisms are commutative squares φ. In
other words, if f and g are morphisms in C and there exists maps φs and φt such that
this diagram commutes

s( f ) t( f )

s(g) t(g)

f

φs φt

g

,

then this square is a morphism from f to g. It is denoted by φ or (φs, φt).

Definition 75 (Source functor). Let C be a category, the source functor is S : Arr C C
defined by:

S0( f ) = s( f ), ∀ f ∈ C1 = Arr(C)0

S1((φs, φt)) = φs∀(φs, φt) ∈ Arr(C)1

Definition 76 (Target functor). Let C be a category, the target functor is T : Arr C C
defined by:

T0( f ) = t( f ), ∀ f ∈ C1 = Arr(C)0

T1((φs, φt)) = φt∀(φs, φt) ∈ Arr(C)1

Definition 77 (Tautological natural transformation). Let C be a category, the tautologi-
cal natural transformation is τ : S ⇒ T defined by τ( f ) = f for all f ∈ C1 = Arr(C)0.
Note that we see the input as an object of Arr(C) and the output as a morphism of C.

Definition 78 (Arr functor). The Arr functor is a functor Cat  Cat that sends a cat-
egory C to its category of arrows and a functor F : C  D to the functor Arr(F) :
Arr(C) Arr(D) defined by

Arr(F)0 = f 7→ F( f )
Arr(F)1 = (φs, φt) 7→ (F(φs), F(φt))

Proposition 79. The correspondences S = C 7→ SC and T = C 7→ TC where SC is the source
functor and TC is the target functor define natural transformations Arr 7→ idCat.

Proof.

Definition 80 (Representable functors). A covariant functor F : C → Set is said to
be representable if there is an object X ∈ C0 such that F is naturally isomorphic to
homC(X,−). If F is contravariant, then we require it to be naturally isomorphic to
homC(−, X).
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Example 81. The functor (−)× : Ring  Set is represented by Z[x, x−1] because any
unit of R× corresponds to the unique homomorphism from Z[x, x−1] to R sending x to
that unit and every homomorphisms from Z[x, x−1] to R must send x to a unit.

Example 82. The forgetful functor has a left adjoint implies it is representable. Look at
what happens on a set with one element. Need to define forgetful functor and adjoint.

Example 83 (Cayley’s theorem with the Yoneda Lemma). Cayley’s theorem states that
any group is isomorphic to the subgroup of a permutation group. We will use the
Yoneda lemma to show that.

Recall the first part of the Yoneda lemma which states that for a category C, a functor
F : C Sets and an object A. We have

Nat(Hom(A,−), F) ∼= F(A).

Moreover, we know the explicit maps, namely, a natural transformation ϕ in the L.H.S.
is mapped to ϕA(idA) and an element u ∈ F(A) is mapped to the natural transformation
{ϕB = f 7→ F( f )(u) | B ∈ C0}.

Let us apply this to C being the category associated to a group G (i.e.: there is one
object ?, Hom(?, ?) = G and the composition law follows the group operation). Note
that any functor F : C  Sets sends ? to a set S and any g ∈ G to a permutation of S,
otherwise g ◦ g−1 = 1 cannot be satisfied.

To use the Yoneda lemma, our only choice for A is ? and we will choose F = Hom(?,−).
The Yoneda correspondence becomes

Nat(Hom(?,−), Hom(?,−)) ∼= Hom(?, ?).

We already know what the R.H.S. is G, but we have to do a bit of work to understand
the L.H.S. First, observe that a natural transformation ϕ : Hom(?,−) ⇒ Hom(?,−)
is just one morphism ϕ? : Hom(?, ?) → Hom(?, ?). Namely, it is a map from G to G.
Second, recalling that Hom(?, g) = g ◦ (−) and that ? is the only object in C0, we get
that ϕ? must only satisfy one diagram.

G G

G G

g◦(−)

ϕ?

g◦(−)

ϕ?

This is equivalent to ϕ?(g · h) = g · ϕ?(h), and we get that each ϕ? is a G-equivariant
map, denote these maps HomG(G, G). We obtain

HomG(G, G) ∼= G.

Now, it is easy to check that HomG(G, G) is a subgroup of ΣG (the group of permutations
of the set G) and that the correspondence is in fact an isomorphism of groups. Cayley’s
theorem follows.
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Let us check that HomG(G, G) < ΣG. Let f be a G-equivariant map. For any g ∈ G,
we have f (g) = f (g · 1) = g · f (1). Thus, f is determined only by where it sends the
identity. Additionally, since g · f (1) ranges over G when g ranges over G, for any choice
of f (1), f is bijective. Finally, if f and f ′ are both G-equivariant map, then

( f ◦ f ′)(g · h) = f ( f ′(g · h)) = f (g · f ′(h)) = g · ( f ◦ f ′)(h),

hence f ◦ g is G-equivariant. With the facts that f−1 is just the G-equivariant map
sending 1 to f (1)−1 and id is G-equivariant, it follows that HomG(G, G) is a subgroup
of ΣG.

The final check is that the Yoneda correspondence G → HomG(G, G) sending g to
(−) · g is a group homomorphism (isomorphism follows because it is a bijection). It is
clear that it sends the identity to the identity and for any g, h ∈ G

(−) · gh = ((−) · g) · h = ((−) · h) ◦ ((−) · g),

so this is a group homomorphism.

3 Limits

Definition 84 (Cones). Let F : J  C be a diagram in C and X ∈ C0. A cone from
X to F is a family {ψY : X → F(Y)}Y∈J0 such that for any morphism f : Y → Z in J,
F( f ) ◦ ψY = ψX, i.e.: the following diagram commutes.

X

F(Y) F(Z)

ψY ψZ

F( f )

Definition 85 (Morphism of cones). Let F : J  C be a diagram in C and {ψY : A →
F(Y)}Y∈J0 and {φY : B → F(Y)}Y∈J0 be two cones to F. A morphism of cones from A
to B is a morphism g : A → B in C such that for any Y, we have ψY ◦ g = φY, i.e.: the
following diagram commutes.

A B

F(Y)

g

ψY φY

Definition 86 (Limit). Let F : J  C be a diagram in C, the limit of F (or J) denoted
lim←− F (or lim←− J), if it exists, is the terminal object of the category of cones to F.

Remark 87. Observe that products arises as limits of diagrams where the domain is
discrete unital, i.e.: it has no morphisms but the identities.
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Proposition 88. Suppose that a category C has arbitrary products and equalizers then C has
arbitrary limits.

Proof. Let F : J  C be a diagram, we claim that the the limit of F is the equalizer of

u1, u2 : ∏
X∈J0

F(X)→ ∏
a∈J1

F(t(a)),

where u1 and u2 are defined below. This equalizer and the products it involves exists by
our hypothesis.

For any X ∈ J0 and a ∈ J1, we have the following projections

πX : ∏
X∈J0

F(X)→ F(X) πa : ∏
a∈J1

F(t(a))→ F(t(a)).

Moreover, note that ∏X∈J0
F(X) has two different ways to project to F(t(a)) for all

a ∈ J1. The first one being via πt(a), we get a unique morphism u1 : ∏X∈J0
F(X) →

∏a∈J1
F(t(a)) that satisfies πa ◦ u1 = πt(a). For the second one, note that F(a) ◦ πs(a)

is also a projection to F(t(a)), thus we get a unique morphism u2 : ∏X∈J0
F(X) →

∏a∈J1
F(t(a)) that satisfies πa ◦ u2 = F(a) ◦ πs(a).

Let e : E → ∏X∈J0
F(X) be the equalizer of u1 and u2 and for any X ∈ J0, let ψX =

πX ◦ e. For any f : Y → Z in J, we have

F( f ) ◦ ψY = F( f ) ◦ πY ◦ e
= π f ◦ u2 ◦ e

= π f ◦ u1 ◦ e

= πZ ◦ e = ψZ,

so we indeed obtain a cone from E to F. Next, for any other cone {φX : O→ F(X)}X∈J0 ,
we get a unique morphism p : O→ ∏X∈J0

such that πX ◦ p = φX (by universality of the
product). We claim that both u1 ◦ p and u2 ◦ p make the following diagram commute
for all a ∈ J1.

O ∏a∈J1
F(t(a))

F(t(a))

ui◦p

φt(a)
πa

We have the following derivations.

πa ◦ u1 ◦ p = πt(a) ◦ p = φt(a)

πa ◦ u2 ◦ p = F(a) ◦ πs(a) ◦ p

= F(a) ◦ φs(a)

= φt(a)
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By universality of the product of the F(t(a))’s, we obtain u1 ◦ p = u2 ◦ p and by uni-
versality of the equalizer, we get a unique morphism n : O → E such that e ◦ n = p.
Furthermore, for any X ∈ J0, we have

ψX ◦ n = πX ◦ e ◦ n = πX ◦ p = φX,

so n is also a morphism of cones (O, φX)→ (E, ψX). Since any other morphism of cones
m needs to satisfy e ◦m = p, we see that n is unique. We conclude that E is indeed the
limit of F.

Remark 89. The same proof yields a more general statement: For any cardinal κ, if a
category C has products of size κ and equalizers, then it has limits of any diagram with
at most κ objects and morphisms.

4 Monads

Definition 90 (σ-algebra).

Definition 91 (Measurable spaces). A measurable space is a set X along with a σ-algebra
of X. A function between two measurable spaces (X, ΣX) and (Y, ΣY) (which is just a
function f : X → Y is said to be measurable if the preimage of any measurable set is
measurable. The category Mes has measurable spaces as its objects and measurable
functions as its morphisms.

Definition 92 (Giry Monad). We define the monad G : Mes Mes. It sends (X, ΣX) to
the set of probability measures on Σ with the smallest σ-algebra that makes eA measur-
able for all A ∈ ΣX, where

eA : G(X)→ [0, 1] = p 7→ p(A),

and [0, 1] has the usual Borel σ-algebra. For a morphism f : (X, ΣX) → (Y, ΣY), G( f )
sends a measure to its image measure (or push-forward), namely,

G( f ) : G(X)→ G(Y) = p 7→ p ◦ f−1.

It remains to define the two natural transformations µ : G2 ⇒ G and η : idMes ⇒ G. For
the former, if (X, ΣX) is measurable and Ω ∈ G2(X), we define

µX(Ω) : ΣX → [0, 1] = A 7→
∫

p∈G(X)
eA(p)dΩ.

For the latter, we define

ηX(x) : ΣX → [0, 1] = δx := A 7→
{

1 x ∈ A
0 x /∈ A

.

21



Definition 93. Let (X, ΣX) and (Y, ΣY) be measurable spaces, a Markov kernel is a
map f : X× ΣY → [0, 1] such that for any B ∈ ΣY, f (·, B) : X → [0, 1] is ΣX-measurable
([0, 1] has the usual Borel σ-algebra) and for any x ∈ X, f (x, ·) is a probability measure
on ΣY. We define the compositions of two Markov kernels f : X × ΣY → [0, 1] and
g : Y× ΣZ → [0, 1] as

g ◦ f : X× ΣZ → [0, 1] = (x, C) 7→
∫

y∈Y
g(y, C) f (x, dy).

In words, (x, C) is mapped to the average of g(y, C) weighted by the measure f (x, ·).

Proposition 94. The category of Markov kernels is the Kleisli category of the Giry monad.

Proof. Recall that in the Giry monad, morphisms are measurable functions f : X →
G(Y) ⊆ ΣY → [0, 1]. We see that f is the curried version of a Markov kernel f : X ×
ΣY → [0, 1]. Moreover, the condition that f (x, ·) is a probability measure is satisfied
because f (x) ∈ G(Y) (the set probability measures on ΣY) and the condition that f (·, B)
is ΣX-measurable is satisfied because

f (·, B)−1(M) = {x ∈ X | f (x)(B) ∈ M} = f−1(N), N ⊆ {p ∈ G(Y) | p(B) ∈ M},

and since N and f are measurable, so is f .
It remains to show that composition of Markov kernels corresponds to the Kleisli

composition. Let f : X → G(Y) and g : Y → G(Y) are Kleisli morphisms, then recall
that we have

g ◦K f = µZ ◦ G(g) ◦ f = x 7→ (C 7→
∫

z∈G(Z)
eC(z) f (x)(g−1(dz))

With some rearrangements, namely uncurrying f and the composition as well as writing
eC(z) as z(C), we obtain:

g ◦K f = (x, C) 7→
∫

z∈G(Z)
z(C) f (x, g−1(dz)).

This is clearly the formula for Markov kernel composition modulo the change of variable
z = g(y).

Remark 95. Recall that the Kleisli category of the power set monad P : Sets → Sets
is the category Rel of sets with relations as morphisms. The Giry monad is, in some
sense, imitating the behavior of the power set for measurable spaces, thus we can think
of Markov kernels as measurable relations or probabilistic relations.
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